

In concentrated H_2SO_4 carbohydrates undergo dehydration to form furfural or hydroxyl – methyl furfural. Furfural on reaction with anthrone reagent gives a blue green coloured complex which shows maximum absorbance at 620 nm.

Reaction

Reagents

- 1. Anthrone reagent (0.2 % in Conc. H_2SO_4)
- 2. Glucose (0.1 g/litre)

Procedure

1 % stock solution of glucose is prepared.

```
1 gm/100 ml
Or
1000 mg/100 ml
Or
10 mg/1 ml
```

While 0.1 g/L of glucose concentration is required.

That means 0.1 g/litre

Or

100 mg/1000 ml

Or

- 10 mg/100 ml
- 2. Different volumes of standard glucose solution are pipette out and mix test sample into series of test tubes.
- 3. 0.5 ml and 1.0 ml of test sample is pipeted out in test tubes.
- 4. One test tube is taken as blank.
- 5. Add distilled water in each test tube as given in observation table to make the final volume to 1 ml.
- 6. 4 ml of anthrone reagent is added in each test tube and mix well.
- 7. Put the tubes in boiling water bath for 10 minutes.
- 8. Cool to room temperature.
- 9. Take a blank tube containing 1 ml distilled water and 4 ml of anthrone reagent and note the O.D. at 620 nm.
- 10. Draw the standard curve between absorbance (O.D.) and concentration of glucose.
- 11. Calculate the concentration of the unknown sample from the standard curve.

Observation table

S. No.	Glucose volume (ml)	Glucose Conc. (mg)	Distilled water volume (ml)	Anthrone reagent (ml)	O.D.
Blank	-	0	1.0		
1	0.1	10	0.9		
2	0.2	20	0.8		
3	0.3	30	0.7		
4	0.4	40	0.6		
5	0.5	50	0.5	4	
6	0.6	60	0.4		
7	0.7	70	0.3		
8	0.8	80	0.3		
9	0.9	90	0.1		
10	1.0	100	-		
Unknown	0.5		0.5]	
	1.0		-		

Standard curve:

Concentration of standard glucose (µg)

Calculation:

O.D. of taken sample - X

From standard curve

Suppose X, O.D. corresponds to y mg of Glucose

Test sample taken – 0.5 ml

So 0.5 ml of the unknown sample contains y mg of Glucose.

Glucose (mg %) = Y/1.0*100

Alternatively, the concentration can be calculated by the formula.

O.D. test -....

O.D. standard -....

Glucose (mg %) = (O.D. test/ O.D. standard X concentration of standard / volume of sample in ml)* 100.

Precautions

- 1. Distilled water should be used.
- 2. Solutions should be pipette out accurately.
- 3. Anthrone reagent should be stirred well.
- 4. The sample should be weighed properly and accurately.
- 5. Test tubes should be covered with aluminum foil before keeping them in water bath.